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A large domain motion in adenylate kinase fromE. coli (AKE) is studied with molecular dynamics. AKE
undergoes a large-scale rearrangement of its lid and AMP-binding domains when the open form closes over
its substrates, AMP, and Mg2+-ATP, whereby the AMP-binding and lid domains come closer to the core.
The third domain, the core, is relatively stable during this motion. A reaction coordinate that monitors the
distance between the AMP-binding and core domains is selected to be able to compare with the results of
energy transfer experiments. Sampling along this reaction coordinate is carried out by using a distance replica
exchange method (DREM), where systems that differ by a restraint potential enforcing different reaction
coordinate values are independently simulated with periodic attempts at exchange of these systems. Several
methods are used to study the efficiency and convergence properties of the DREM simulation and compared
with an analogous non-DREM simulation. The DREM greatly accelerates the rate and extent of configurational
sampling and leads to equilibrium sampling as measured by monitoring collective modes obtained from a
principal coordinate analysis. The potential of mean force along the reaction coordinate reveals a rather flat
region for distances from the open to a relatively closed AKE conformation. The potential of mean force for
smaller distances has a distinct minimum that is quite close to that found in the closed form X-ray structure.
In concert with a decrease in the reaction coordinate distance (AMP-binding-to-core distance) the lid-to-core
distance of AKE also decreases. Therefore, apo AKE can fluctuate from its open form to conformations that
are quite similar to its closed form X-ray structure, even in the absence of its substrates.

1. Introduction

Adenylate kinase (AK) catalyzes the reversible transforma-
tion.

There are three domains in AKs: core, lid, and AMP-binding
(Amp-bd). AKs are thought to be in an open form in the absence
of substrates and, when Mg2+-ATP and AMP are present, the
lid and Amp-bd domains undergo major conformational rear-
rangements, resulting in the closed form ternary complex.1

Extensive kinetic studies of rabbit AK (with a shorter lid domain
than in AKE) indicate that it occurs by an isorandom Bi Bi
mechanism, in which the two substrates can bind in random
order to one isoform while the two products bind in random
order to another isoform of the enzyme.2 These kinetics suggest
that apo-AKE can exist in at least two conformations, with one
form binding Mg2+-ATP and AMP and the other Mg2+-ADP
and ADP.2 Other experiments3,4 suggest that each of these
subensembles encompasses of a variety of conformers. NMR
studies also support the existence of a conformational ensemble
for the apo enzyme.5 The importance of domain conformational
changes has been emphasized by recent experiments showing
that they, versus the chemical, phosphoryl transfer step, are rate
limiting in AKE and can rationalize differences in activity

between mesophiles and thermophiles.6 Crystallography1 and
time-resolved dynamic nonradiative excitation energy transfer
experiments7 show that binding AMP is associated with an initial
conformational change. Binding of the next substrate, usually
modeled with a binary substrate, mimics AP5A (ATP and AMP
linked by a fifth phosphate group), resulting in the formation
of the closed, catalytically competent form. The transition from
apo (open) to closed forms involves rearrangements with
significant lid and Amp-bd domain motion to close the
interdomain cleft.8 The energy transfer studies of domain closure
in AKE were carried out by labeling appropriate pairs of
residues, Ala55, a residue in the Amp-bd domain and Val169,
which is just below the lid, and distance distributions that reflect
the conformational space exploration were obtained. The apo-
enzyme has a broad distance distribution, with a mean and width
around 30 Å. The width of this distribution indicates that apo-
AKE samples a very large conformational ensemble in solution.

Two extremes of a ligand/substrate binding mechanism can
be envisaged. The ligand could bind to the apo form and induce
the required conformational changes (“induced fit”) or it could
select from preexisting protein conformations that are already
“predisposed” to the ligand (“conformational selection”). Kosh-
land9 refined Fisher’s lock and key hypothesis into the concept
of induced fit, which he defined as a close fit between the protein
and ligand that occurs only after conformational changes are
induced by the ligand.9 On the other hand, it may be that proteins
were designed to sample conformations that are predisposed to
capture substrates, to yield the final substrate-bound structure.10-13

There is evidence for this latter view in proteins such as
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staphylococcal nuclease,14,15calbindin,16 adenylate kinase3,4 and
calmodulin,17 and cyclophilin A.13 The data noted above on large
domain motions in AKE provides a good test system to begin
an exploration of these two views of ligand binding. But, if
protein molecular dynamics (MD) with explicit solvent is run
on the current practical time scale of nanoseconds, simulations
of the apo form will tend to stay around that minimum, as we
have found in a previous AKE study.18 The large rearrangements
required to go from the apo to more closed forms cannot be
accessed on an MD time scale. That has stimulated a number
of studies of adenylate kinase based on the elastic network model
(ENM), which is a reduced description relative to atomistic MD
and MC approaches,19-21 Temiz et al.19 studied the open and
closed forms with the ENM, Miyashita et al.20 connect the two
forms using a small set of normal modes that are locally adjusted
along a path between the two, and Maragakis and Karplus21

use a minimum energy path method to span the two extremes.
The generic sampling problem, which is due to the complexity

of the protein’s energy landscape, with barriers large compared
with the thermal energy separating stable states, is a major
concern in MD and Monte Carlo (MC) simulations. A number
of methods, such as multicanonical ensemble,22,23 simulated
tempering,24,25 and the replica exchange method (REM),26-29

were designed to address this issue. The REM was proposed26,30

in the context of Ising spin glasses31 and introduced to
proteinlike systems by Sugita and Okamoto.27 The original
versions of the REM used temperature (TREM), and more
recently, a Hamiltonian REM (HREM) was introduced.32 These
methods all contain two elements: (1) Multiple copies of
configurations are run independently by MD or MC with
different temperatures and/or Hamiltonians. (2) Two neighbors
in the sense of temperature and/or Hamiltonian are exchanged,
according to the Metropolis-Hastings algorithm.33 Different
from multicanonical ensemble and simulated tempering meth-
ods, the REM does not need to perform trial runs to determine
a weight (density of states), as is required in the multicanonical
ensemble23 and simulated tempering methods.24,25In the TREM,
the low-indexed system (usually low temperature) borrows fast
equilibration properties from high-indexed systems. That pro-
vides a doorway for the low-indexed system to overcome energy
barriers and thus improve the sampling.34 However, the number
of replicas needed in the TREM is unfortunately proportional
to the square root of the number of degrees of freedom of the
system of interest.32

Fukunishi et al.32 proposed the HREM, in which the potential
function in different Hamiltonians differs by a small subset of
the total number of degrees of freedom required to characterize
the system. By doing this, one hopes that the number of replicas
needed will be reduced. One way to change the Hamiltonian
that is well suited to a study where a reaction coordinate is
introduced is to integrate the umbrella sampling method33 with
the HREM. Namely, one creates different systems by adding
different umbrella window potential functions to the original
system that serve to restrain the systems to different values of
the reaction coordinate. We will refer to this specialization of
HREM as the distance REM (DREM). This idea was proposed
by Sugita and co-workers in the context of a multidimensional
temperature and distance replica exchange method and applied
to the alanine trimer.35

In this work, we use the DREM to investigate if apo-AKE
can reach conformations that are similar to those found in the
substrate bound structures. Harmonic potentials are used as the
window potentials along a reaction coordinate, which is the
distance between the mass centers of residues Ala 55 and Val

169, to match the residues used in the energy transfer experi-
ments.7 The potential of mean force along this reaction
coordinate over a range of approximately 35 Å is obtained with
use of the DREM. The large range of the reaction coordinate
spans the open and closed X-ray structure values. Because this
application of the DREM is designed to probe a very large
conformational change in a protein with an explicit solvent
simulation, a careful study of the quality of the simulation and
its advantages over conventional umbrella sampling (no DREM)
is carried out. We find that the DREM does provide enhanced
sampling versus no DREM, as measured by improvements in
the speed of decay of time correlation functions and the extent
of conformational space exploration. The DREM provides a
sufficient enhancement in sampling that, over the simulation
length, convergence with respect to motions that reflect the
large-scale movement of AKE is achieved.

In Section 2 the DREM is introduced and details of its
application to the AKE simulation are provided, along with
various methods to investigate its convergence and enhanced
sampling quality. Section 3 first addresses the validation of the
acceptance ratio in the DREM exchanges and then studies the
convergence to equilibrium of the sampling and measures of
the DREM sampling improvement versus no-DREM. The
potential of mean force is then presented along with related
quantities that provide a picture of the motion of AKE in its
configuration space. Our conclusions are presented in Section
4.

2. Methodology

Distance Replica Exchange Method.The temperature REM
(TREM) constructs independent copies of a system that differ
by their temperature. The REM concept can be generalized to
a Hamiltonian REM,32 where the systems differ by their
Hamiltonian (in practice, in their potential energy function). As
a matter of terminology, we shall refer to these different
Hamiltonians assystems(versus replicas) because replica
connotes a copy of an item. The term replicas will be reserved
for the configurations that are present on any particular MD
step. It is perhaps useful to take an operational point of view
and consider that each processor on a computer is assigned a
particular system (Hamiltonian) and different replicas (configu-
rations) can visit that particular processor (system). In our MD
program, CUKMODY, however, a given replica is maintained
on a particular processor and the systems (the window function
parameters) move onto and out of that processor.

If the desire is to enhance the sampling along a chosen
reaction coordinate, then systems that differ by a window
potential to maintain a desired distance can be introduced to
give a distance REM (DREM). Thus, we add a window potential
Wi(r ) (i ) 1, 2, ...,N) to the original HamiltonianH0(X) where
r ) f(X) is any reaction coordinate dependent onX, the
configuration point, so thatHi(X) ) H0(X) + Wi(r ). As in the
HREM,32 appeal to the detailed balance condition

where R(X iX j f X jX i) is the acceptance probability that
configurationX i in the ith system exchanges with configuration
X j in the jth system andPi(X) is the Boltzmann distribution at
temperatureT ) 1/kBâ for the ith system provides a rule for
the exchange between two systems. In our case of a one-
dimensional distance reaction coordinate,r, the ith window
function is chosen as a harmonic restraintWi(r) ) ki(r - r0

i )2

R(X iX j f X jX i)Pi(X i)Pj(X j) ) R(X jX i f X iX j)Pi(X j)Pj(X i)

(2.1)
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with ki and r0
i the force constant and equilibrium distance,

respectively. The acceptance probability that follows from eq
2.1 and the harmonic window potential is

where

In the case of the same force constant for all windows, eq 2.2b
simplifies to

Between the attempted exchange steps, conventional MD
simulations are performed for the different systems. In the
TREM (DREM), the exchanges may be thought of as config-
uration or temperature (window) exchanges. From the compu-
tational perspective, it is a great advantage of the DREM that
only the force constant and equilibrium distance parameters need
be exchanged (eq 2.2b) or just the equilibrium distance
parameters (eq 2.2c). The exchanges are attempted between
neighboring windows because, for the method to be effective,
the overlap between the windows’ probability distributions needs
to be adequate. In contrast with the TREM (unless ensemble
averages at higher temperatures than the “normal” one are of
interest), the information from all the windows is used directly
because it will ultimately provide the potential of mean force
along the reaction coordinate. The details of the DREM
application to AKE are given below.

Molecular Dynamics Simulations.The CUKMODY protein
molecular dynamics code, which uses the GROMOS9636 force
field, was modified to incorporate the DREM. The systems are
run independently on different nodes of a Linux cluster computer
and, when exchanges are attempted, information is passed using
the message passing interface technique implemented as MPICH.

Four simulations were performed that we shall refer to as
DREMA, DREMP, DREMB, and NoDREM. The simulations
were run at 303 K under fixed number, volume, and temperature
(NVT) conditions.37 In the DREMA and DREMB, different force
constants are used, and the window function parameters are
collected in Table 1. The parameters were chosen by first noting
that the root-mean-square position fluctuation for a harmonic
potential isxkBT/ki that, in the absence of other forces, sets
the width of the reaction coordinate distribution in a window.
The DREMP simulation uses 17 systems with reaction coor-
dinate equilibrium distances from 5 to 21 Å with an increment
of 1 Å and uniform force constants of 3 kcal/mol. The uniform
force constants for the DREMP simulation turned out to not
provide accurate results. Thus, on the basis of short trial runs,
additional windows with different force constants to improve
the acceptance ratios were added, as discussed below. The
NoDREM simulation uses the same window potentials as the
DREMB, but does not attempt exchanges. It is a conventional
window reaction coordinate simulation, and it was performed
to compare its efficiency with a DREM simulation. All the
simulations were carried out in a box with sides of 69.05 Å,
having 9471 waters added. For the evaluation of the electrostatic
and the attractive part of the Lennard-Jones energies and forces,
the PME method was applied with a direct-space cutoff of 9.0
Å, an Ewald coefficient of 0.32, and a 72× 72× 72 reciprocal
space grid. Four Na ions were added to neutralize the system.

To prepare the systems, we start with the open (apo) form
X-ray structure (PDB 4AKE, chain A),38 where the reaction
coordinate distance is 28.7 Å, and first relax systems with
window equilibrium distances,r0

i , ranging from 24 to 35 Å for
100 ps. Then, we start with the last trajectory snapshot of the
system withr0

i of 25 Å and relax the systems withr0
i ranging

from 18 to 24 Å for another 100 ps. The same procedure
continues forr0

i ranging from 10 to 17 Å and from 5 to 9 Å.
On the larger distance side, we start with the last trajectory
snapshot of the system with equilibrium distance of 35 Å and
equilibrate the systems withr0

i of 36-39 Å for 100 ps. For the
DREMB and NoDREM, we start the simulations after those
preparation times and simulate for 9 and 7 ns, respectively. For
the DREMP, another 900 ps are devoted to relaxing the systems
without exchange and then run for 7 ns with exchange. Because
of the problems of the DREMP that were found, we added more
systems to span some regions of the reaction coordinate. Those
extra systems are gently brought to the target force constants
and r0

i values listed in Table 1, DREMA. Starting from last

R(X iX j f X jX i) ) min(1,e-∆(X iX j f X jX i)) (2.2a)

∆(X iX j f X jX i) ) â[(Wi(rj) + Wj(ri)) - (Wi(ri) + Wj(rj))]

(2.2b)

∆(X iX j f X jX i) ) âk(ri - rj)(r0
j - r0

i ) (2.2c)

TABLE 1: Mapping of Indices i for the Window Functions
Wi(r) in the DREMA and DREMB to the Equilibrium
Distancesd ) r0

i and Force Constantsk in the DREM
Simulations

index d (Å)a k (kcal/mol‚Å2)b

DREMA
0 5 3
1 5.5 6
2 6 6
3 6.33 20
4 6.66 20
5 6.9 20
6 7 3
7 8 3
8 9 3
9 9.5 6

10 10 9
11 10.33 20
12 10.66 15
13 11 3
14 12 3
15 13 3
16 13.5 6
17 14 6
18 15 3
19 16 3
20 17 3
21 17.5 6
22 18 3

DREMB
0 21 3
1 22 3
2 23 3
3 24 3
4 25 2
5 26 2
6 27 2
7 28 2
8 29 2
9 30 3

10 31 3
11 32 3
12 33 3
13 34 3
14 35 3
15 36 3
16 37 3
17 38 3
18 39 3

a Equilibrium distance of the harmonic bias window function.b Force
constant of the harmonic bias window function.
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trajectory snapshot of the DREMP of systems with equilibrium
distance of 13 and 17 Å, two systems withr0

i values of 13.5
and 17.5 Å are run with force constants of 3 kcal/mol, and then
another 600 ps are run with 6 kcal/mol force constants. Starting
with the last trajectory snapshots of the DREMP of systems
with r0

i of 7 and 10 Å, we first run 200 ps with a force constant
of 3 kcal/mol andr0

i , respectively, of 6.5 and 10.5 Å. Then
another 400 ps are run with force constants 6 kcal/mol and,
finally, we fork from those two distances into, respectively, 6.33
and 6.66 Å, and 10.33 and 10.66 Å, and run for another 200 ps
with the target force constants in Table 1. After those extra
systems were prepared, we start the DREMA from the last
trajectory snapshots of the DREMP and the prepared extra
systems. The DREMA was run for 9 ns.

For all the trajectory analyses of AKE, the core is defined as
residues 1-29, 60-121, and 160-214, leaving the Amp-bd
domain as residues 30-59 and the lid domain as residues 122-
159.

Principal Component Analysis.Principal component analy-
sis39-44 (PCA) diagonalizes the covariance matrixσij ) 〈δRiδRj〉
of the atom fluctuationsδRi ) Ri - 〈Ri〉 from their trajectory-
averaged〈Ri(t)〉 ) ∫0

T Ri(t) dt/T values, where theRi ) {xi,yi,zi}
denote the Cartesian components of the position of theith atom.
It decomposes the configuration pointX(t) ) (x1(t),y1(t), ..,
zN(t))T as

where themi are the (orthonormal) eigenvectors of the cova-
riance matrix, the corresponding eigenvalues are denoted asλi

2,
and thepi(t) are the mode displacements. The eigenvalues are
related to the mean-square fluctuation (MSF) of the atoms over
the trajectory as MSF) (1/N) ∑i λi

2. In the rotated Cartesian
coordinate basis defined by themi (i ) 1, 2, ..., 3N), the largest
eigenvalue captures the largest fraction of the MSF, the second
largest the next largest fraction of the MSF, etc. In favorable
cases, a small set of modes capture most of the protein’s
fluctuation. The lower index modes are associated with collec-
tive motions of the protein and their convergence to stable values
as a function of simulation length provides a severe test of
equilibration of a simulation. In this regard, PCA can be used
to assess the improvement in simulation efficiency that the
DREM provides relative to a no DREM simulation. Several
convergence tests have been proposed.45-47 Amadei and co-
workers45 introduced a root-mean-square inner product (RMSIP)
measure

that evaluates the overlap of a subset ofn modes, where the
modes are obtained from different time intervals taken from
the total trajectory. For example, time intervalst′ could be taken
from the second half of the trajectory, starting from the end,
and the other intervals of lengtht, taken from the first half of
the trajectory starting from the beginning. Convergence can be
assessed in this manner. The PCA is carried out by using
ANALYZER,48 a program written for the purpose of analyzing
trajectory data by a wide variety of methods.

Methods for Analyzing the Acceptance Ratio of a REM.
In a REM simulation, or any method that uses a chain of
parametrized simulations that must be connected between an
initial and final state, there must be sufficient overlap of

probability distributions in the neighboring states. In the REM
context, one may use the overlap of the energy distributions at
different temperatures for the TREM27 and, for DREM, the
overlap of the reaction coordinate distribution.35 A naı̈ve
estimate of an acceptance criterion is obtained by simply
counting the number of successful exchanges. This method will
be referred to as thedirect method. A formal measure of the
TREM overlap is obtained via the average acceptance ratio

as recently discussed.34 Pi(X) ) e-âiV(X)/Z(âi) is the normalized
canonical ensemble distribution function, andZ(âi) is the
corresponding configurational partition function at temperature
Ti ) /kBâi. With the properties of the min function and by
introducing the density of statesΩ(U) as a function of potential
energy valuesU ) V(X), one obtains the form presented by
Kofke:49

where, by assertion,â0 > â1(T0 < T1), andUm is the minimum
possible energy for the system. As Kofke points out, the integral
in eq 2.6 quantifies the overlap of the energy distributions in
the accepted range of exchanges; thus, this overlapping of the
energy distributions is an alternative measure of the acceptance
ratio. For the DREM with the same force constants, a similar
formula can also be obtained and the acceptance ratio will
translate to the overlapping of two reaction coordinate distribu-
tions. However, such a relation breaks down when the force
constants for the harmonic potential along the reaction coordi-
nate are not uniform. Because, for our DREMA simulation, the
force constants are not uniform along the reaction coordinate,
we here provide a general version of eq 2.5 that can be applied
to any replica exchange method:

whereP0 andP1 are again the density functions of configurations
X0, X1, andA is the area where the acceptance probabilityR
for the Monte Carlo move (X0, X1) f (X1, X0) is definitely
1.0, which means that the exchange attempt is definitely
accepted under this area. This way of analyzing the acceptance
ratio will be referred to as thedefinite exchangemethod. In
Appendix A, we show that eq 2.7 is a direct result of the detailed
balance condition governing the Monte Carlo move in the
exchange step. By counting the definite exchanges (exchanges
with probability 1) and then doubling the counts, one can get
another estimation of the acceptance ratio that in TREM
measures the overlapping of the energy distribution and in
DREM (with the same force constants) measures the overlapping
of the reaction coordinate distribution. Note that, for a suf-
ficiently long trajectory, all methods must lead to the same value
of the acceptance ratio. A recent article50 on evaluating ratios
of partition functions using the REM obtains eq 2.7 along with
its generalization that we introduce in Appendix A. The variance
of the acceptance probability is analyzed in this work,50 and
they show that the variance of acceptance probability, whose

X(t) ) ∑
i)1

3N

[X(t) · mi]mi ) ∑
i)1

3N

pi(t)mi (2.3)

RMSIP) [1n ∑
k)1

n

∑
i)1

n

mk(t)‚mi(t′)]1/2

(2.4)

pacc) 1
Z(â0)Z(â1)

∫ dX0 ∫ dX1 e-â0V(X0) e-â1V(X0)

min[1, e(â0-â0)(V(X0)-V(X0))] (2.5)

pacc) 2
Z(â0)Z(â1)

∫Um

∞
dU0 ∫Um

U0 dU1Ω(U0)

e-â0U0Ω(U1) e-â1U1 ) 2∫Um

∞
dU0 ∫Um

U0 dU1P0(U0)P1(U1) (2.6)

pacc) 2∫A
dX1 dX0P0(X0)P1(X1) (2.7)
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average is given by eq 2.5, must be less than that obtained from
the direct method.

PMF Construction Using WHAM and Its Extension.
When a window method is used to obtain a potential of mean
force (PMF) along a reaction coordinate, the trajectory data
obtained from the different windows needs to be combined. The
weighted histogram analysis method (WHAM)51,52 combines
the data from multiple windows of different bias window
potential by writing the true, unbiased (by the window poten-
tials) estimated probability density,F(u)(r), along the reaction
coordinater as a linear combination of the window biased
probability densitiesFw

(b)(r)

The coefficientscw in this linear combination are found by
minimizing the statistical error of the density estimation along
the reaction coordinate.52 We use the WHAM to obtain the
PMF(r) ) -kBT ln Fu(r) along the reaction coordinate. In
Appendix B, we derive an extension of WHAM that provides
a multidimensional PMF that depends on coordinates other than
the reaction coordinate yet, by assumption, does not require
window potentials to restrain these coordinates. That is, the
assumption is made that the sampling in these nonrestrained
coordinates is reasonable. For example, we show that a
simulation with windows along the reaction coordinater that
provide the biased densitiesFw

(b)(r) (w ) 1, ...,N) can provide
an unbiased estimate of a PMF in coordinatesx andy according
to PMF(x,y) ) -kT ln(Fu(x,y)).

3. Results

Acceptance Ratio and Validation of the Simulation.An
issue of importance to REM methods is the choice and
optimization of the acceptance probability of attempted ex-
changes. There should be an optimal acceptance probability
because, for low exchange probability, the rate of movement
through configuration space is small, while for high exchange
probability, the movement through configuration space is slow.
The tendency is to consider a sufficiently high acceptance ratio
as an indication of appropriate performance. Predescu and co-
workers34 recently analyzed the optimization of the TREM
acceptance ratio based on the concept of an effective fraction,
defined as the fraction of configurations that leave the lowest
temperature system and reach the highest temperature system.
Their proof relies on sampling from an equilibrium distribution,
with the exchanges attempted sufficiently infrequently that the
states involved in exchange are decorrelated and equal ac-
ceptance probabilities for attempted neighboring exchanges. On
the basis of an analysis of a multidimensional oscillator system,
they find that 38.74% is the optimal acceptance ratio, while an
exchange ratio ranging from 7-82% will only at most double
the computational effort. However, this effective fraction
concept depends on the fact that, in the TREM, the lowest
indexed (lowest temperature) system will borrow the fast
equilibration property of the highest indexed (highest temper-
ature) system. This property relies on the feature that the average
energy sampled scales with temperature and therefore the region
of configuration space sampled by the higher index systems is
larger, for a given number of steps, than the lower index ones.
Thus, the effective fraction is a very important measure for the
effectiveness of the exchange in TREM. However, in the
DREM, it is not clear whether the lowest indexed system can
borrow any such property from the highest indexed system. In

the DREM, the highest index system is sampling a different
region of configuration space (not a larger region, as in the
TREM) than the lowest index system.

However, as we show below, the DREM dramatically reduces
the time autocorrelations of the systems, and the accuracy of
the estimation of any time average is inversely proportional to
the time autocorrelation.33 The reduction of time autocorrelation
essentially comes from the fact that different independent
replicas are visiting the same particular system. (Recall, per the
discussion in the Methods Section, that a system corresponds
to a particular Hamiltonian (window function)). Thus, a suf-
ficient acceptance ratio is necessary for the appropriate perfor-
mance of the simulation. But this does not imply that the larger
the acceptance ratio the better the simulation because it is
possible that a replica just leaving the system can return to the
same system in a near future exchange, which definitely will
increase the acceptance ratio, but also, unfortunately, increase
the time autocorrelation. Another factor related to the time
autocorrelation will be how many replicas visit the same system.
With more replicas visiting the same system, there will be an
enhanced chance to reduce the time autocorrelation. Thus, we
first examine the acceptance ratio, then examine the range of
the replicas visiting a particular system, and last, examine the
time autocorrelation. It is worth pointing out that the autocor-
relations discussed here do not provide information on the decay
of the unbiased (true) system time correlations. As in any
umbrella sampling based method, only equilibrium information,
such as a PMF, is available.

Before we performed the DREMA (see the Methods Section
and Table 1) with its added window functions, we carried out
the DREMP simulation. It turned out that the DREMP failed
due to some insufficient acceptance ratios. For the DREMP,
we calculated the acceptance ratios for four time intervals: 3-4,
4-5, 5-6, and 6-7 ns. The acceptance ratio was obtained by
directly counting the number of actual exchanges performed
during a simulation. We refer to this approach as thedirect
method, as noted in the Methods Section. We also calculate
the quantity std/average, which is the ratio of the standard
deviation of those acceptance ratios to their averages across the
four time intervals. Very large std/averages are observed for
exchanges between systems with equilibrium distances of 5 and
6 Å (86%), 6 and 7 Å (84%), 9 and 10 Å (104%), and 10 and
11 Å (60%). A detailed examination of the acceptance ratios
shows that, across those time intervals, they range from tens or
twenties of percent to 1% for systems with the same window
potential. Thus, during the time interval with 1% acceptance
ratio, the system does not have a sufficient acceptance ratio.
We also evaluate the distribution of the reaction coordinate for
each system for each nanosecond interval. The distributions for
the systems at equilibrium distances of 6 and 10 Å are very
unstable, with an obvious shift (about 1 Å) of peaks between
the first 5 ns and last 2 ns for both systems and a change of
fluctuation for the fifth ns for the system with an equilibrium
window distance of 6 Å. This lack of stability makes the
simulation unsuitable for the calculation of a PMF along the
reaction coordinate. All these measures show that the DREMP
is a problematic simulation. Thus, we performed another
simulation (DREMA) based on the DREMP by adding more
potential windows along the reaction coordinate and strengthen-
ing the force constants where the shifts of peaks appear.

One way to estimate the acceptance ratio is to count directly
the number of actual exchanges performed during a simulation,
the direct method, just used to investigate the DREMP. The
definite exchange method (see Methods Section), which is better

F(u)(r) ) ∑
w)1

N

cwFw
(b)(r) (2.8)
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grounded in statistical analysis, evaluates the average acceptance
ratio pacc, as given in eqs 2.2 and 2.5-2.7. The average
acceptance ratio defined in eq (2.2) is simply the trajectory
average of the acceptance probabilityR(X iX j f X jX i) for
exchanges between systemsi andj. The general version ofpacc

given in eq 2.7 is suited to the DREM method, where the
windows have different force constants, as in the DREMA
simulation.

We calculate the acceptance ratio during the whole 9 ns
DREMA and DREMB simulations using both methods. In
addition, we calculate the std/average ratios. For the DREMA
part, the simulation is divided into five time intervals, 0-1,
1-3, 3-5, 5-7, and 7-9 ns, and in the DREMB part, the
simulation is divided into six time intervals, 0-1, 1-2, 2-3,
3-5, 5-7, and 7-9 ns. The acceptance ratio data for each
interval is used for the purpose of the std/average calculation.
Table 2 summarizes the results. For the DREMA, except for
the exchange pair 17 and 18, where the direct method acceptance
ratio is low at 6%, the acceptance ratio is larger than 10% for
all other exchange pairs. These estimations are confirmed from
the estimation by the definite exchange method. However, the

acceptance ratios across the different systems are not uniform,
which may imply that future tuning could be done.35 We also
note that there are still large std/average ratios obtained between
systems with potential index 5 (6.9 Å) and 6 (7 Å), 6 and 7 (8
Å), and 12 (10.66 Å) and 13 (11 Å) with std/average 34%, 49%,
35%, respectively. Those three regions point back to the same
problematic regions as in the DREMP simulation. However,
the variation is significantly reduced compared to the result from
the DREMP simulation. Examining the acceptance ratio data
in the different time intervals shows a few low ones, namely
4-9% for exchange pairs with system indices 17 and 18 during
the whole simulation and 6% for exchange pair 6 and 7 during
the 5-6 ns time interval, 7% for exchange pair 12 and 13 during
the 5-6 ns time interval, and 7% for exchange pair 18 and 19.
All the other 102 acceptance ratios for the different systems in
the five time intervals are larger than 10%. These results
dramatically contrast with the very low acceptance ratio (∼1%)
in the problematic regions in the DREMP simulation.

For the DREMB simulation, all the direct method acceptance
ratios are greater than 10%, which is consistent with the
estimations obtained from the definite exchange measure. The
acceptance ratio is uniform across systems with different
window potentials. Also, the std/average ratios are low, indicat-
ing that the acceptance ratios are uniform across the whole
simulation time for a system with a particular window potential.
This uniformity across time and systems implies that the
DREMB is a successful DREM simulation, which will be
confirmed by other evidence discussed below.

To examine the number of replicas visiting a particular system
(with a particular window function), we list in Table 3 the range
of replica indices for each system in the DREMA and DREMB
simulations. For the DREMA, no system has all the replicas
visiting it. There are basically three groups of systems: group
A (potential indices 0-6), where systems have low indexed
replicas visiting them, group B (potential indices 7-13), where
systems have both high- and low-indexed replicas visiting them,
and group C (potential indices 14-22), where systems have
high-indexed replicas only visiting them. Group A consists of
systems with equilibrium distances ranging from 5 to 7 Å, and
only replicas originating from systems with equilibrium dis-
tances less than or equal to 11 Å visit group A. Most of the
systems in this group have about1/3 of the replicas visiting them,
except the system with index 6 has1/2 of the replicas visiting
it. Group C consists of systems with equilibrium distances
ranging from 12 to 18 Å, and only replicas originating from
systems with equilibrium distances larger than or equal to 9.5
Å visit group C. While most of the systems in this group have
1/2 the replicas visiting them, the last three systems have only
1/3 of the replicas visiting them.

Figure 1 (left panel) displays three typical time trajectories
of replica visits for systems with indices 3, 10, and 18. Figure
1 (right panel) displays the complementary information of how
selected replicas are visited by different systems for replicas 4,
11, and 21. From the latter plot, one can conclude that, in a
specified range, the replica does undergo a random walk in the
reaction coordinate for the DREMA simulation.

For the DREMB simulation, there are also no systems where
all the replicas visit a particular system, although all the systems
have more than half of the replicas visiting them. In contrast
with the DREMA simulation, all the systems have replicas with
both higher and lower indices visiting them, which results in a
random walk of replicas in the reaction coordinate along the
whole reaction coordinate chain. In Figure 2 (left panel), we
present replica visits for systems indexed as 8 and 18 as typical

TABLE 2: Acceptance Ratio for the Time Span of the
Whole Simulations

potential index acceptance ratioa acceptance ratiob std/average

DREMAc

0 T 1 0.444 0.445 0.124
1 T 2 0.284 0.282 0.061
2 T 3 0.269 0.270 0.174
3 T 4 0.146 0.145 0.182
4 T 5 0.293 0.292 0.062
5 T 6 0.233 0.231 0.345
6 T 7 0.130 0.130 0.490
7 T 8 0.242 0.243 0.185
8 T 9 0.327 0.328 0.124
9 T 10 0.179 0.179 0.044
10 T 11 0.239 0.237 0.186
11 T 12 0.180 0.180 0.167
12 T 13 0.160 0.160 0.350
13 T 14 0.162 0.162 0.244
14 T 15 0.197 0.196 0.176
15 T 16 0.277 0.275 0.053
16 T 17 0.249 0.250 0.069
17 T 18 0.061 0.063 0.314
18 T 19 0.121 0.120 0.225
19 T 20 0.162 0.161 0.148
20 T 21 0.240 0.240 0.117
21 T 22 0.362 0.360 0.107

DREMBd

0 T 1 0.129 0.128 0.077
1 T 2 0.117 0.115 0.067
2 T 3 0.115 0.117 0.063
3 T 4 0.165 0.157 0.086
4 T 5 0.205 0.201 0.074
5 T 6 0.192 0.192 0.068
6 T 7 0.186 0.188 0.085
7 T 8 0.208 0.206 0.103
8 T 9 0.148 0.155 0.126
9 T 10 0.123 0.119 0.066
10 T 11 0.122 0.117 0.084
11 T 12 0.106 0.115 0.083
12 T 13 0.105 0.103 0.090
13 T 14 0.128 0.126 0.057
14 T 15 0.113 0.117 0.087
15 T 16 0.114 0.115 0.167
16 T 17 0.128 0.117 0.154
17 T 18 0.117 0.121 0.094

a From the direct estimation method.b From the definite exchange
method.c DREMA exchanges are attempted every 40 fs.d In the first
7 ns of DREMB exchanges are attempted every 200 fs; for the last 2
ns, every 40 fs.
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examples of the worst and best cases and, in the right panel,
systems visiting replicas indexed as 4 and 18 as typical examples
of the best and worst cases. One feature of the number of
replicas having visited the systems in both the DREMA and
DREMB simulations is that systems in the middle of the chain
tend to have more replicas visiting them, while systems at the
two ends of the chain tend to have fewer replicas visiting them.
This feature, as shown below, coincides with the trend of the
volume sampled in the space spanned by the first 2 PCA modes.

As noted above, one advantage of the DREM may be to
reduce the time autocorrelation of each system. As a test of
this idea, we construct (normalized) time autocorrelation func-
tions (1/T) ∫0

T p1(s)p1(s + t) ds/∫0
T p1(s)p1(s) ds of the first PCA

modep1(t), defined in eq 2.3. This variable is chosen because
the first mode captures the largest fraction of the total MSF of
the protein. It also should represent the slowest motions and
may be most sensitive to slow decorrelations. Figure 3 displays
typical time autocorrelation plots of the displacement of the first
mode for a particular system. The trajectory was first fit on the
core CA atoms of the open form of AKE before the PCA
analysis was performed to better single out the fluctuations of
the lid and Amp-bd domains. Figure 3a is a representative of
the five systems, indexed as 5, 6, 9, 10, and 13. Here, one first

observes that the time autocorrelation decays toward zero rapidly
at the beginning. However, there is a very slow motion taking
place, which prevents the correlation from decaying to zero on
the simulation time scale. Those five systems coincide with the
exchange pairs having large std/average (see Table 2). This is
understandable in the sense that a slow motion is taking place
in those systems, which makes the equilibration time longer
than for other systems. Figure 3b displays a representative of
the other 18 systems, which not only have a fast initial decay
but also converge to zero very rapidly. For the DREMB
simulation, with the exception of system 18, all systems exhibit
a fast initial decay and approach zero, as will be discussed more
fully when a comparison is made with the NoDREM simulation.

In summary, for the DREMA simulation, significant ac-
ceptance ratios are observed between different exchange pairs.
A large improvement over the DREMP is gained by adding
more systems and adjusting the umbrella sampling force constant
and distance parameters. The systems can be divided into 3
groups, two of which have a clear separation in the origin of
the replicas visiting them. In contrast to the TREM, though,
whether such a separation is an indication of a problem with
the DREM is not clear. Whether mixing is significantly helped
by a replica going from a low- to a high-indexed system, versus
a more limited set of exchanges, is not evident. In terms of the
decay of time autocorrelations, all the systems have a large
reduction of time autocorrelation relative to non-DREM simula-
tions (see below). For 18 of the 23 systems, the approach to
zero also is fast. On the basis of these considerations of
acceptance ratio and time autocorrelation, we consider that the
DREMA simulation is successful, although there is still room
to tune it. For the DREMB, the significant acceptance ratios,
their uniformity across time and systems, the successful random
walk of the replicas in the reaction coordinate, and the reduction
of time autocorrelation definitely indicate that it is a valid
simulation.

PCA Comparison of the DREMB and NoDREM Trajec-
tories. To study the ability of the DREM to increase sampling
efficiency, we performed a principal component analysis40,42

study on every system in both the DREMB and NoDREM
(without exchange attempts) simulations. The PCA was per-
formed after the trajectories were fit on the core CA atoms of
the open form X-ray structure, which removed the overall
rotation and translation and serves to emphasize the motion of
the lid and Amp-bd domains. The data from the 1-6 ns intervals
of the DREM and NoDREM simulations are used, with the first
ns discarded as an equilibration period.

PCA is a powerful tool to study protein dynamics because it
can reduce the high-dimensional configuration space to an
essential subspace that contains most of the significant, large-
scale motions. Unfortunately, the slow relaxation of those large
fluctuations prevents the fast convergence of the covariance
matrix,53 which results in slow convergence of the essential
space spanned by those large fluctuation modes and may also
spoil the detection of fast motions.53 Because proteins have a
wide distribution of relaxation times, ranging from picoseconds
to seconds,54 slow relaxation is an intrinsic problem of
conventional MD simulations.

In our examination of the efficiency of the DREM, we will
take the space spanned by the first two PCA modes as the
essential subspace. In Figure 4, the fraction of the total
fluctuation, as measured by the MSF, taken up by the first two
modes in the DREMB and NoDREM simulations are shown.
(The fraction is based on the MSF because this expresses the
proportion of the overall fluctuation due to a given number of

TABLE 3: Summary of Replicas Visiting Systems with a
Particular Window Potential

potential index min replica max replica no. of replicas visiting

DREMA
0 0 8 8
1 0 8 8
2 0 8 9
3 0 8 9
4 0 8 9
5 0 8 9
6 0 13 13
7 1 19 14
8 1 19 14
9 1 19 15

10 3 19 14
11 5 19 13
12 5 19 14
13 5 19 13
14 9 22 12
15 9 22 13
16 11 22 12
17 11 22 12
18 11 22 11
19 11 22 10
20 11 22 8
21 11 22 7
22 11 22 7

DREMB
0 0 15 12
1 0 15 12
2 0 16 13
3 0 16 14
4 0 16 15
5 0 16 17
6 0 17 18
7 0 17 18
8 0 17 18
9 0 17 17

10 0 18 18
11 0 18 18
12 2 18 17
13 2 18 17
14 3 18 15
15 3 18 14
16 3 18 11
17 3 18 10
18 3 18 10
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PCA modes.) The smallest proportion in the DREMB is 58%
at the equilibrium window distance ofr0

i ) 37 Å, while the
smallest in the NoDREM is 49% atr0

i ) 31 Å. This validates
our use of the first two modes as a measure for exploration of
the efficiency of the DREM compared with the NoDREM.

Convergence in the essential subspace is a major concern of
the application of PCA to protein simulations. The RMSIP
measure45 discussed in the Methods Section, eq 2.4, examines
convergence by comparing the overlap of modes constructed
by using different time intervals of the simulation. In our test,
n ) 2 (the first two modes) and we take intervals increasing
with a 100 ps stride until the intervals are 1 ns long. After the
1 ns interval, we take a different stride of 200 ps. The two
intervals taken to compare with each other are always of same
time length, with one starting at the beginning of the analysis
time and the other from the end of this analysis time. This
arrangement is used to reduce the possible correlation between
the two time intervals45 intended for comparison. Instead of
using the RMSIP, we use its square because RMSIP2 is a direct
measure of the portion of the projection of the basis of one
subspace onto the other subspace. In Figure 5, we show the
RMSIP2 test for every system in DREMB and NoDREM. In
the study of Amadei and co-workers,45 they consider that an

RMSIP around 0.6 (RMSIP2 ) 0.36) represents good overlap
for PCA analysis of convergence. In this sense, all the PCA
results, both in DREMB and NoDREM, have good convergence
except for the NoDREM at a distance 23 Å. For the DREMB,
except for the last three systems with equilibrium distance at
37, 38, and 39 Å, all the RMSIP2 reach about 0.8. This definitely
shows that the DREMB simulation has very good convergence
properties in terms of the essential space spanned by the first
two PCA modes. We also notice a striking feature of the
convergence test that, except for the system at distance 38 Å,
the DREMB systems have a better or equal convergence level
with the corresponding NoDREM systems. Thus, we conclude
that, in the DREMB run, the PCA converges better than in the
NoDREM. For most of the DREMB data, the plots in Figure 5
appear to be converging toward unity. Because the RMSIP
procedure is based on comparing the first half of the data with
the second half (here, 2.5 out of the total 5 ns), it seems safe to
conclude that, over the total 5 ns interval, the convergence is
excellent.

The DREM method should reduce time autocorrelations,
implying a speedup in the sampling of configuration space. That
is, by moving more rapidly through configuration space, the
DREM should decorrelate configurational variables more quickly

Figure 1. Visits of the replicas to systems with their window potential indexed as (a) 3, (b) 10, and (c) 18, in the DREMA simulation. Migration
patterns of systems for the replicas indexed as (e) 4, (f) 11, (g) 21, showing the itineration along the reaction coordinate. Note that, in view of the
number of data points that are plotted, it may appear that at a particular time several replicas occupy the same window or several systems visit the
same replica; this does not happen.
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than a normal MD simulation would. By definition, the lower
PCA modes describe the largest collective motions of the protein

and should be most subject to the slow convergence problem
noted above, and should provide a very sensitive test of the
idea of reducing time autocorrelation. Therefore, we focus on
the first two PCA modes. In Figure 6, we present representative
time autocorrelations of the trajectories for the first two PCA
modes for every system in the DREMB and NoDREM simula-
tions. For the first mode (Figure 6a) of the DREMB simulation,
with the exceptions for the window equilibrium distances of
34, 35, and 39 Å, all the other 16 systems have very rapidly
decaying time autocorrelation functions, which correspond to
fast relaxation times. On the other hand, all the time autocor-
relation functions in the NoDREM simulation decay very slowly.
Most of the time, the autocorrelation does not even approach
zero during the half of the analysis time window that is used
for constructing Figure 6. (We present only half of the analysis
time window due to the much greater error in the estimation of
time correlation in the latter half of the analysis time window).

Figure 2. Best and worst case visits of the replicas with system window potentials indexed as (a) 8 and (b) 18 in the DREMB simulation. Best
and worst cases of migration of replicas indexed as (c) 4 and (d) 18. Note that, in view of the number of data points that are plotted, it may appear
that at a particular time several replicas occupy the same window or several systems visit the same replica; this does not happen.

Figure 3. Time autocorrelation functions of the first PCA mode
displacement,p1(t), for the DREMA simulation. (a) A representative
of the slow convergence to zero, including systems indexed as 5, 6, 9,
10, and 13. (b) A representative of the fast convergence to zero for all
the other 18 systems.

Figure 4. Fraction of the MSF taken up by the first two PCA modes.
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This absence of sufficient decay of the time autocorrelation in
the NoDREM simulation precludes the estimation of a relaxation
time. For mode two of the DREMB (Figure 6b), the 39 Å system
does not approach zero very quickly, while all the other systems
do approach zero very rapidly. For the NoDREM, again, the

decay to zero is slow. Thus, we conclude that compared to
NoDREM, DREMB significantly reduces the decay time of the
time autocorrelation functions. Faster decay of the mode time
autocorrelation functions leads to a reduction in theVariance
of the PCA covariance matrix, accelerating the convergence of

Figure 5. RMSIP convergence test (see eq 2.4). RMSIP2 of the subspace spanned by the first two modes for time intervals in the first half
overlapped with time intervals from the second half of the last 5 ns of the trajectory.
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the covariance matrix.53 The presence of slow decays in the
NoDREM time autocorrelation functions for 34, 35, and 39 Å
could come from the slow relaxation of degrees of freedom other
than the reaction coordinate, where other free energy barriers
exist.

A complementary way to study the efficiency of the DREM
is to compare the extent of the configuration space sampled by
DREMB and NoDREM. Because the essential space of the PCA
takes up most of the protein motion, it is natural to examine
the volume of this essential space. This is the strategy used by
Zhang,55 as well as Sanbonmatsu and Garcia,56 in TREM

simulations. They found that their systems explored more space,
based on the first two PCA modes, than the space explored by
normal MD, when comparable total simulation times are used
for the comparison. We use the kernel density estimation method
with a Gaussian kernel57 to estimate the probability density in
the plane spanned by the first two modes. Figure 7 presents the
typical probability density of the system in the plane spanned
by the first two modes of the PCA analysis. We deliberately
make the scale in the probability density axis the same, while
we set the scales of the other axes according to their respective
ranges to contrast the differences between the DREMB and

Figure 6. (a) DREMB and NoDREM (no exchange attempts) time autocorrelations for PCA mode one, for 24, 34, 35, and 39 Å. The DREMB
24 Å plot is representative of the fast decay DREMB systems. The DREMB systems with equilibrium window distances of 34, 35, and 39 Å show
slower decay. The NoDREM systems for all equilibrium window distances exhibit slow decay behavior. (b) The DREMB and NoDREM time
autocorrelations for PCA mode two, for 24 and 39 Å, respectively. The 24 Å plot is representative of the fast decay DREMB systems. The 39 Å
DREMB system is the only one with slower decay. The NoDREM decays are slow for all equilibrium window distances.

Figure 7. Probability density in the plane spanned by the first two PCA modes for the 23 and 38 Å systems. The 23 Å result is representative of
all the systems other than the 38 Å system. (a) NoDREM. (b) DREMB. The 38 Å NoDREM and DREMB systems occupy almost the same area,
while for all other systems, the DREMB probability is much more spread out than that for the NoDREM.
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NoDREM results. The probability density of the system with
equilibrium distance 24 Å is representative of the other 17
systems, with the exception of the one at 38 Å. The NoDREM
density plots are high and sharp, while the DREMB plots are
quite flat. The difference is striking. Because the integral of
the probability density over the whole plane is unity, the flatness
in the DREMB density plots indicate that the areas explored in
the DREMB simulation is much greater than the areas explored
in the NoDREM simulation. The one exception is for the system
at 38 Å; it covers about the same area in both the DREMB and
NoDREM simulations.

Sanbonmatsu and Garcia found56 in their TREM study that
the space spanned by the first two modes is about five times
greater than that in the MD simulation with comparable
aggregated simulation time. There are a number of ways of
estimating the spanning space. Here, first, in an aggressive way,
we calculate the space by calculating the area of the rectangle
formed by therangesof the mode one and two trajectories.
However, this range method is very prone to errors due to
outliers and low probability regions in the data, and therefore,
this range estimation may not be accurate. To be more
conservative, we also introduce another way to estimate the
space explored by the simulation that we call thep% most
probable volume. It is the volume in which the most probable
events take place with probabilityp%. For example, the p%
most probable volume for the standard normal distribution is
the length starting from the (50- p/2)% quantile and ending
with the (50+ p/2)% quantile, noting that the standard normal
distribution decreases symmetrically from its maximum at zero.
A rough algorithm is used to estimate this volume: First, grid
the space into cells using a particular resolution. Second,
distribute all the points to the cells in the grid. Third, sort the
cells in descending order according to the number of points they
contain. Fourth, starting with the cell with the greatest number
of points, add up the number of points in the cells until the
accumulated number of points is equal toNp%, whereN is the
total number of points. The number of cells counted multiplied
by the volume of the unit cell then is thep% most probable
volume. In principle, this algorithm can be applied to find the
volume in space for any dimension; however, the number of
points required to maintain the accuracy of the volume increases
roughly exponentially. Here, we only apply it to the essential
subspace formed by the plane spanned by the first two PCA
modes. To make the results from the DREMB and NoDREM
comparable, we make the average number of points over the
cells the same. Also, to make sure that the method is reliable,
two estimations are made for each DREMB and NoDREM
simulation, with two different average numbers of points in the
cell. Figure 8 displays the 75% most probable area spanned by
the first two PCA modes in DREMB and NoDREM, with the
average number of points in a cell 4 and 8. The two estimations
using different average number points in a cell are very similar,
confirming the reliability of our method. With the exception of
the equilibrium window distance 38 Å, where the NoDREM is
slightly bigger than the DREMB, the area explored by DREMB
is bigger than the area explored by NoDREM. This result is
consistent with the density plots in Figure 7. In Table 4, we
present ratios of areas under the first two PCA modes of
DREMB to NoDREM, calculating both in the aggressive way
of using rectangles formed by the two ranges in modes one
and two, and in the conservative way using the 75% most
probable volume. The system with equilibrium distance 29 Å
has the largest ratio of 7, while the system with equilibrium
distance 39 Å has the smallest ratio of 1.7. So, we conclude

that the DREMB simulation has explored considerably more
space than the NoDREM simulation, except for the system with
equilibrium distance 38 Å.

In summary, comparing the DREMB and NoDREM simula-
tions with the same time length and same initial conditions (see
Methods Section), the DREMB’s essential space, occupying at
least 58% of the total fluctuation, converges faster than the
NoDREM’s essential space, occupying at least 49% total of the
total fluctuation. In terms of time autocorrelations, the DREMB
systems decay to zero much faster than the NoDREM systems.
At the same time, the DREMB simulation explores considerably
more space in the essential space. These three comparisons
provide strong evidence that the DREMB performs sampling
more efficiently than does the NoDREM simulation.

PMF Calculation and Biological Implications. The WHAM
provides a convenient, statistically based approach to combine
trajectory data from multiple windows with their different
biasing potentials and obtain the PMF along a reaction
coordinate. Here, we use it to calculate the PMF along our

Figure 8. The 75% most probable area spanned by the first two PCA
modes in the DREMB and NoDREM simulations. The areas occupied
by the DREMB simulations are, with the exception of the 38 Å
equilibrium window distance, considerably greater than in the NoDREM
simulation.

TABLE 4: Ratios of Areas Spanned by the First Two
Modes of the DREMB and NoDREM Simulations

potential index ratioa ratiob ratioc

1 3.02 3.40 3.28
2 2.93 3.55 3.61
3 3.77 7.74 7.95
4 5.57 5.17 5.30
5 2.97 2.79 2.78
6 7.86 6.32 6.57
7 4.27 2.43 2.46
8 5.55 5.33 5.38
9 8.18 7.09 7.11

10 4.98 3.52 3.53
11 7.65 6.20 6.51
12 5.01 6.03 5.95
13 2.91 2.87 2.98
14 3.56 2.06 2.11
15 3.33 2.53 2.50
16 3.11 2.99 3.00
18 1.35 0.94 0.96
19 3.61 1.71 1.80

a Based on the ranges of PCA modes 1 and 2.b Based on the 75%
most probable volume (4 pts) of PCA modes 1 and 2.c Based on the
75% most probable volume (8 pts) of PCA modes 1 and 2.
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selected reaction coordinate, the distance between the mass
centers of residues 55 and 169, which are the residues that were
labeled in the energy transfer experiments7 and serve as a
monitor of the Amp-bd domain-to-core distance. To make sure
of the convergence of the PMF, we calculated the PMF for the
time corresponding to the first half and the second half of the
trajectory for the DREMA and DREMB data. In addition, two
trajectories (7 ns with the first ns discarded) of equilibrium
distance of 19 and 20 Å of the DREMP simulation are used to
connect the DREMA and DREMB simulations. Those two
trajectories are not in the problematic regions and have good
converging distributions along the reaction coordinate for the
different time intervals.

The energy transfer experiments by Sinev et al.7 show that
AKE has an average reaction coordinate value of 31.0 Å for
the free form, 23.2 Å for the AMP-bound form, 18.7 Å for the
Mg2+-ATP bound form, and 11.5 Å for the AP5A (a mimic of
the tertiary complex) bound form. The reaction coordinate value
is 28.7 Å in the free form X-ray structure and 11.5 Å in the
AP5A-bound X-ray structure.1 Figure 9 displays the PMF. The
PMF from 10 to 39 Å converges very well, with some
discrepancy for reaction coordinate values less than 10 Å. The
lowest PMF value along the reaction coordinate occurs at 12.4
Å. This distance is very close to the distance in the AP5A-bound
form, and below, we show that this most stable state is similar
to the closed form. Note that there is no barrier when one goes
from 39 to 10 Å, and all the reaction coordinate distances that
correspond to the open, AMP-bound, and Mg2+-ATP-bound
forms have at least a 2 kcal/mol difference with the minimum
PMF value at 12.4 Å. This free energy difference translates to
a ratio of occupation probabilities of about 28. However, noting
that the PMF from 18 to 30 Å is very flat compared to the
PMF around 12 Å, it is more appropriate to make comparisons
based on integrating the corresponding probability densities over
reaction coordinate values. Thus, we integrate the probability
density over the ranges 18 to 39 Å and 4 to 18 Å. The ratio of
the second to the first integral is 3.88, which means that, if we
consider conformations with reaction coordinate range from 18
to 39 Å as one state and 4 to 18 Å as another state, then the
free energy difference between these two states is only 0.81
kcal/mol. The flatness of the PMF in the 18 to around 30 Å
range is an indication of a large entropic contribution in this
region. Distances larger than∼30 Å (the X-ray open form
reaction coordinate distance is 28.7 Å) may correspond to

configurations that are becoming so “stretched” that their
probabilities are decreasing due to decreasing entropic and
increasing energetic components of the free energy. The PMF
result is consistent with that found in the energy transfer
experiment,7 where the free form does sample a very large
number of conformations, as indicated by the large dispersion
found around the average reaction coordinate value.

The energy transfer experiment7 does not provide information
about how the lid reacts to the changes in the reaction coordinate
distance. The reaction coordinate monitors the Amp-bd-to-core
distance. But, when AKE closes, there is also a large motion
of the lid relative to the core, as is evident by comparing the
open and closed X-ray structures. In particular, the distance
between the mass centers of the lid and core is 29.8 Å in the
free form and 20.3 Å in the AP5A-bound form X-ray structures.
To explore this issue, we calculate PMF(x,r), the two-
dimensional PMF in the plane spanned by the reaction coor-
dinate,r, and the mass center distance between the lid and core,
x. Figure 10 displays this two-dimensional PMF. The most stable
conformation has a lid-to-core mass center distance of∼20.5
Å and a reaction coordinate of∼12.0 Å, which are very close
to the AP5A-bound form distances. Note also that, from 18 to
30 Å of the reaction coordinate, the PMF is not only flat along
the reaction coordinate but also along the mass center lid-to-
core distance. Most interestingly, in this region, the lid can
fluctuate from the distance found for the free form (∼30 Å) to
the distance found for the AP5A-bound form (∼20 Å) in the
X-ray data. This flatness in the lid-to-core region can compen-
sate for the high PMF in the reaction coordinate direction
relative to the region around the minimum of 12 Å. If one starts
with the largest value of the reaction coordinate and decreases
it, first, the lid can take on any conformation between the closed
and open forms. Then, when the reaction coordinate reaches
near 18 Å, the fluctuations of the lid-to-core mass center distance
become smaller. When the reaction coordinate decreases further,
these fluctuations get even smaller. Finally, when the reaction
coordinate is around 12 Å, the lid is mostly in a closed form,
with a relatively small proportion open. Along the lid-to-core
direction, there is a substantial free energy barrier separating
these closed and open lid conformations.

The induced closure hypothesis that was proposed for AKE
is based on the static X-ray structures of apo and various AKE1

complexes where, in the free form, AKE has an open lid and
an open Amp-bd site. Then, when AMP binds, the lid and Amp-
bd domains both close a little and, when AP5A binds, the lid

Figure 9. PMF for the first half, second half, and all of the trajectory
data.

Figure 10. PMF in the plane spanned by the lid-to-core mass center
distance and the reaction coordinate.
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and Amp-bd domains are completely closed. The above results
show that there is an alternative perspective, which does not
contradict the results of the X-ray based induced view. Instead
of a completely open conformation (both Amp-bd and lid open)
in the free form, in our simulation, AKE can also exist in a
completely closed conformation (both Amp-bd and lid closed).
Thus, even in the absence of ligands, AKE can sample
conformations similar to the completely closed form that is
found in the ternary (AP5A) complex. When the reaction
coordinate is in the range of the open form of the Amp-bd
domain relative to the core, AKE also can sample multiple lid
conformations, ranging between the closed- and open-lid
conformers and, as the Amp-bd distance decreases, the lid-to-
core distance decreases and its fluctuations are reduced.
Furthermore, the existence of multiple conformations in the free
form is consistent with NMR experiments5 and also with the
kinetic studies.2

Another perspective on the conformations sampled is obtained
by constructing a two-dimensional histogram, using for one
coordinate,x, the trajectory RMSD relative to the closed X-ray
form and for the other,y, the trajectory RMSD relative to the
open X-ray form. To do this, we first calculate the unbiased
densityFu(x,y) in the x-y plane based on an extension of the
WHAM method51,52 that is developed in the Methods Section.
The density is then converted to a PMF according to PMF(x,y)
) -kBT ln Fu(x,y). It turns out (data not shown) that the most
populated conformations in thex-y plane are those around the
closed-form X-ray structure.58 In Figure 11, we display a
snapshot from the system with window equilibrium distance of
12 Å to show how close it is to the closed X-ray structure. The
CA RMSD of the snapshot fit on the closed-form core is 4.0
Å, while the CA RMSD fit on the open-form core is 7.0 Å.

4. Conclusions

In this paper, we showed that the DREM is much more
efficient in sampling configuration space than a normal MD
simulation with umbrella sampling. To demonstrate this, we
focused on the first two PCA modes that represent a substantial
fraction of the protein fluctuations and should correspond to
the more directed parts of the protein motion. The DREM has
better convergence behavior than the corresponding NoDREM
simulation in the PCA subspace spanned by the first two vectors.
Indeed, the DREM greatly reduced the time autocorrelation of
the trajectories of the first and second mode displacements
relative to the NoDREM simulations. From the perspective of
a given system (window potential), the visits from other replicas
introduce new configurations that are relatively far from the
current configuration and will reduce the time correlation much
faster than in the absence of exchanges. Consequently, the
convergence of the covariance matrix on which the PCA relies
is accelerated. The enhanced sampling of the DREM method
is also reflected in the larger volume explored in the subspace
of the first two PCA modes relative to the NoDREM simulation.
Over the time interval of the simulation, the convergence toward
unity of the RMSIP overlap measure is excellent for the DREM,
indicating that reliable predictions can be made for the large
conformational transformation of AKE under study.

A comparison of the one- (Figure 9) and two-dimensional
PMFs (Figure 10) is instructive. The DREMA simulation for
the inner range (r ∼ 5-18 Å) required a more elaborate
parametrization of the window functions than did the DREMB
simulation for the outer range (r ∼ 21-39 Å) of the reaction
coordinate. Not surprisingly, once the Amp-bd domain has been
pulled in substantially, with the concomitant decrease in the

lid-to-core distance, the resulting increase in atom interactions
requires many subtle adjustments. That is one possible contribu-
tor to the greater discrepancy in the PMF(r) obtained using the
first and second half of the trajectory data for this inner region
evident in Figure 9. Another potential contributing factor,
revealed in Figure 10, is the complex structure of the PMF(x,r)
for r < 10 Å, with the well-separated conformers in the lid-
to-core direction for both the Amp-bd-to-core distances of∼12
and ∼8.5 Å. It is encouraging that the DREM can provide
reasonable results in this difficult-to-sample region. The con-
figurational updates from exchanges of systems with different
window potentials also introduce information from different lid-
to-core distances.

AKE can sample multiple conformations in the free form.
The PMF along the reaction coordinate (Figure 10) shows a
broad, flat region for larger values and a “hole” around 12 Å,
a distance that corresponds well with the Amp-bd core distance
in the closed, AP5A-bound X-ray structure. The Amp-bd domain
is most likely sampling a large range of conformations at these
larger reaction coordinate distances, indicating a substantial
entropic component to this flat free energy surface. Our previous
simulations on free form AKE that did not use a reaction
coordinate method did show (from a study of the PCA modes)
a tendency to fluctuate in the closing direction, but evidently
there are significant energy barriers to the closing motion that
could not be overcome in a conventional MD simulation. While

Figure 11. Representative snapshot from the system with equilibrium
window distance 12 Å superposed on (a) the closed-form X-ray structure
(yellow trace) and (b) the open form X-ray structure (yellow trace). In
each case, the snapshot is fit on the core of the X-ray structure. The
snapshot resembles the closed form much more closely than the open
form, indicating that the apo form can fluctuate to a near-closed
conformation.
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the small free energy difference (∼0.8 kcal/mol) favoring
“closed” (4-18 Å) versus “open” (18-39 Å) that we find is
consistent with the experimental data, it must be stressed that,
allowing for the quality of MD force fields and the differences
between experimental and simulation systems, it is only safe
to conclude that there is some reasonable fraction of “closed”
states.

Examination of conformations along the reaction coordinate
trajectory showed that, in addition to ones similar to the AP5A-
bound conformation, there are conformations in which the lid-
core distance ranges from the corresponding distance in the free
form X-ray structure to the one in the AP5A-bound X-ray
structure. The two-dimensional PMF in the reaction coordinate
and lid-core distance variables (Figure 10) shows that, as the
reaction coordinate distance decreases, AKE’s lid progressively
changes its motion from readily fluctuating between its open
and closed conformations toward more constrained fluctuations
until it mainly stays in the closed-form conformation when the
reaction coordinate is around 12 Å. It is interesting that, in the
simulation protocol where the Amp-bd-to-core distance is
reduced gradually, the lid-to-core distance responds to this
reduction by also decreasing, and does so in a manner that
eventually produces conformations similar to the closed-form
X-ray structure. Furthermore, as these distances decrease, the
range of lid-to-core distances sampled decreases, in agreement
with the reduction in fluctuations as successive ligands are bound
in the energy transfer experiments. The correlation between these
distances does not contradict the random bi bi mechanism
suggested for AKs.59 That is, once ligand free closed conforma-
tions are sampled, the ligands can then bind in random order,
and both are required for the final catalytically competent
structure.

The open-to-closed transition in AKE has been studied by
methods that are generalizations of the elastic network model
(ENM) whereby the path between open and closed forms is
obtained by mixing these two endpoints.21,20 Both studies
conclude that the lid and Amp-bd domains can rearrange without
a great (free) energy penalty, while the core is quite stable during
this transition. Maragakis and Karplus,21 starting from the open
form, find that first mainly the lid closes and then the Amp-bd
domain closes. They attribute the order to the small energy cost
of moving the lid, with its flexible hinge connections to the
core domain. They identify hinges for the open-to-closed
pathway that are similar to those found using the open and
closed X-ray structures. Because our simulation uses a reaction
coordinate, the Amp-bd core distance, we cannot obtain an order
of closing. Note that our result does not rely on using a specified
closed form endpoint; the closed form we obtain emerges just
from the distance restraint on the Amp-bd-to-core distance. We
determined the hinges between the open-form X-ray structure
and the closed structure snapshot displayed in Figure 11, using
the DynDom program.60 The results show that there are hinge-
bending regions around the beginning (residues 117-123) and
end (residues 153-167) of the lid domain and around the
beginning (residues 26-29) and end (residues 64-66) of the
Amp-bd domain. These are quite close to those found in the
ENM work21 that used DynDom and similar to those found by
other methods using open (beef heart) and closed (AKE) X-ray
structures.10

The ease with which AK can sample a large conformational
space is supported by the MD and ENM approaches. In this
regard, a recent investigation of chimeric forms of adenylate
kinase that are constructed by switching regions of mesophilic
and thermophilic varieties showed that the core is mainly

involved in thermal stability while the lid and Amp-bd domains
are not.61 In the DREM simulations, the core structure is well
maintained at all stages along the reaction coordinate, indicating
the stability of the core during the large-scale rearrangements
of lid and Amp-bd domains, which is consistent with the chimera
results. Furthermore, in a previous MD simulation of apo AKE,18

we found that raising the simulation temperature induced an
increase in the mobility of the lid and Amp-bd domains while
the core stayed stable.

The scenario presented above provides an attractive alternative
to the induced fit hypothesis, where ligand binding is required
for closing AKE. Instead, what we find is that the apo form of
AKE can sample a broad range of conformational states, some
of which resemble the final closed form. These conformations
may be more advantageous for ligand binding by requiring
smaller protein rearrangements (with a reduced energetic
requirement) than would be necessary in the more open forms.
Of course, in the process of binding ligands, an entropic penalty
from restricting the space available to the ligands must be
compensated for by the formation of ligand-protein interactions.
These final rearrangements must occur even if the protein is in
a state resembling the ligand-bound closed form.

Acknowledgment. This work is supported by the NIH (grant
no. GM62790). The simulations were carried out on the
Michigan Center for Biological Information Linux cluster at
Michigan State University.

Appendix A

The average acceptance ratio is defined as

with the transition probability satisfying the detailed balance
condition of eq 2.1. For a Metropolis Monte Carlo transition
probability,

with, for a general HREM simulation,

eq A.1 can be resolved as

The second integral’s area restriction can be expressed in
terms of the definitely accepted region with the use of the
detailed balance condition since

pacc) ∫ dR0 ∫ dR1 P0(R0)P1(R1)R(R0R1 f R1R0) (A.1)

R(R0R1 f R1R0) ) 1 (∆ e 0)

) exp(-∆) (∆ > 0)
(A.2a)

∆(X iX j f X jX i) ) â[(Ei(X j) + Ej(X i)) - (Ei(X i) + Ej(X j))]

(A.2b)

pacc) ∫∫
R(R0R1fR1R0))1

dR0 dR1P0(R0)P1(R1) +

∫∫
R(R0R1fR1R0)<1

dR0 dR1P0(R0)P1(R1)R(R0R1 f R1R0)

(A.3)

∫∫
R(R0R1fR1R0)<1

dR0 dR1P0(R0)P1(R1)R(R0R1 f R1R0)

) ∫∫
R(R0R1fR1R0)<1

dR0 dR1P0(R1)P1(R0) (A.4)
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Here, we have used the property that the “reverse” transition
probability must be unity for this region of integration. Then,
interchange of integration variablesR0 f X1, R1 f X0 in eq
A.4 provides

Adding this to the first integration region result in eq A.3 yields
eq 2.7.

A generalization of eq 2.7 can be devised that may be of use
for certain types of replica exchange rules. The above equation
will not hold if there exists afinite area where∆ ) 0 in the
Cartesian product spaceX0 × X1. When ∆ ) 0, R(X0X1 f
X1X0) ) R(X1X0 f X0X1) ) 1. For example, in a temperature
exchange method, where two systems have the same temper-
ature, the system must exchange with probability 1 on every
attempt. So, according to eq A.5, the acceptance ratio from
method 2 will double the acceptance ratio of method 1. This
problem comes from the fact that, under the whole area formed
by Cartesian productX0 × X1, ∆ ≡ 0. Then the area where∆
) 0 will double count the probability. The error comes from
the reasoning in eq A.5 that the area whereR(X1X0 f X0X1)
< 1 is equivalent to the area whereR(X0X1 f X1X0) ) 1.
Apparently, if there exists a finite area whereR(X0X1 f X1X0)
) R(X1X0 f X0X1) ) 1, then the area will be double counted.
A more general form forpacc based on this reasoning is

In the case of the DREM and the TREM, the second part of
this equation is zero because there is no area where∆(X0X1 f
X1X0) ) 0, because∆(X0X1 f X1X0) ) 0 means a line (one
lower dimension in the Cartesian product spaceX0 × X1) and
the probability density function is assumed to be continuous.
This issue was also identified in a recent work, and a similar
remedy was proposed.50

A circumstance where eq A.6 would be necessary would be
in a HREM, where the exchange rule parameter∆(X0X1 f
X1X0) would depend on a cutoff energy. That is, an energy
threshold would first be evaluated in order to decide if the
Hamiltonians for systems 0 and 1 are different. That would lead
to a finite area of configuration space where∆(X0X1 f X1X0)
) 0 and necessitates the use of eq A.6.

Appendix B

We want to show that the expected value of the estimated
probability that the coordinate values (s,t) lie in the rectangle
(x,y) × (x + ∆x,y + ∆y) is unbiased. That is, the average of
the estimated probability is the true value when it is constructed
according to the window method we used in the Results Section.
The estimated probabilityP̂(u) is expressed as

where the indicator function is

and

Here, for windoww, Ww(r) is the window function,nw is the
number of points in the window, andfw is the corresponding
free energy. Now, the expected value of the estimated probability
is

whereFw
(b)(s,t,r) is the biased distribution for windoww.

According to Souaille and Roux,52 the WHAM method
provides the connection

between theFw
(b)(s,t,r) andF(u)(s,t,r), the unbiased distribution.

Therefore, using eq B.5 in B.4,

So, the estimated probability is unbiased.
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